Information | |
---|---|
has gloss | eng: In mathematics, the Loomis–Whitney inequality is a result in geometry, which in its simplest form, allows one to estimate the "size" of a d-dimensional set by the sizes of its (d – 1)-dimensional projections. The inequality has applications in incidence geometry, the study of so-called "lattice animals", and other areas. |
lexicalization | eng: Loomis-Whitney inequality |
lexicalization | eng: Loomis–Whitney inequality |
instance of | e/Inequality |
Meaning | |
---|---|
Finnish | |
has gloss | fin: Loomisin–Whitneyn epäyhtälö on geometriaan liittyvä epäyhtälö. Sen mukaan jos A on epätyhjä kompakti joukko \mathbbR}^n:ssä, on V(A)\leq \prod_i=1}^\lambda V_m(A_i)^n/\lambda m}, missä \lambda=\binomn}m} ja V_m on Lebesguen mitta \mathbbR}^m:ssä. Aiheesta muualla *Juri Burago & Viktor Abramovič Zalgaller: Geometric Inequalities. ISBN 978-0387136158 |
lexicalization | fin: Loomisin–Whitneyn epäyhtälö |
Lexvo © 2008-2025 Gerard de Melo. Contact Legal Information / Imprint