e/Berger's inequality for Einstein manifolds

New Query

Information
has glosseng: In mathematics — specifically, in differential topology — Berger's inequality for Einstein manifolds is the statement that any 4-dimensional Einstein manifold (M, g) has non-negative Euler characteristic χ(M) ≥ 0. The inequality is named after the French mathematician Marcel Berger.
lexicalizationeng: Berger's inequality for Einstein manifolds
instance ofe/Inequality
Meaning
Bosnian
has glossbos: U matematici, posebno u diferencijalnoj topologiji, Bergerova nejednakost za Einsteinove višestrukosti je iskaz koji govori da bilo koji četverodimenzionalna Einsteinova višestrukost (M, g) ima nenegativnu Eulerovu karakteristiku χ(M) ≥ 0. Nejednakost je dobila naziv po francuskom matematičaru Marcelu Bergeru.
lexicalizationbos: Bergerova nejednakost za Einsteinove višestrukosti

Query

Word: (case sensitive)
Language: (ISO 639-3 code, e.g. "eng" for English)


Lexvo © 2008-2025 Gerard de Melo.   Contact   Legal Information / Imprint