Information | |
---|---|
has gloss | eng: In mathematics — specifically, in differential topology — Berger's inequality for Einstein manifolds is the statement that any 4-dimensional Einstein manifold (M, g) has non-negative Euler characteristic χ(M) ≥ 0. The inequality is named after the French mathematician Marcel Berger. |
lexicalization | eng: Berger's inequality for Einstein manifolds |
instance of | e/Inequality |
Meaning | |
---|---|
Bosnian | |
has gloss | bos: U matematici, posebno u diferencijalnoj topologiji, Bergerova nejednakost za Einsteinove višestrukosti je iskaz koji govori da bilo koji četverodimenzionalna Einsteinova višestrukost (M, g) ima nenegativnu Eulerovu karakteristiku χ(M) ≥ 0. Nejednakost je dobila naziv po francuskom matematičaru Marcelu Bergeru. |
lexicalization | bos: Bergerova nejednakost za Einsteinove višestrukosti |
Lexvo © 2008-2025 Gerard de Melo. Contact Legal Information / Imprint